Better Performance
Faster Treatment Planning
Stronger Immune System

BETTER. FASTER. STRONGER.

Better Therapies
Faster Diagnosis
Stronger Hearts

2017 Research Report
Health innovation at UHN
UHN Research Snapshot

TOTAL RESEARCHERS 1,094
Appointed Researchers 464
Clinical Researchers 630

RESEARCH SPACE 969,913 sq. ft.

TOTAL FUNDING $386,192,252

TOTAL TRAINEES 783
Fellows 309
Graduate Students 474

TOTAL STAFF 2,098
Institute Staff 1,802
Research Support Staff 296

PUBLICATIONS 3,732

The cover features six UHN researchers whose work exemplifies how we are making health care better, faster and stronger. They are, from top left (clockwise): Drs. Karen Davis, Thomas Purdie, Pamela Ohashi, Michael Laflamme, Frank Rudzicz and Cristina Nostro.

University Health Network (UHN) is a research hospital affiliated with the University of Toronto and a member of the Toronto Academic Health Science Network (TAHSN). UHN comprises the Michener Institute for Education at UHN and four hospitals: the Princess Margaret Cancer Centre (PM Cancer Centre), Toronto General Hospital (TGH), Toronto Rehab (TR) and Toronto Western Hospital (TWH). It has five research institutes: Krembil Research Institute (Krembil), PM Cancer Centre, Techna Institute for the Advancement of Technology for Health (Techna), Toronto General Hospital Research Institute (TGHRI) and Toronto Rehabilitation Institute (TRI). The scope of research and complexity of cases at UHN have made it a national and international source for discovery, education and patient care.
Welcome Message: Pushing the Limits

Featured Research

Why Some Gain When Under Pain
More flexible communication in the brain could make pain less of a distraction while performing a task

Making Every Move Count
Research exposes a hidden defence mechanism that protects cancer from the body’s immune system

Reading Between the Lines
New artificial intelligence platform can diagnose and monitor Alzheimer disease using verbal descriptions of an image

On Target for Cell Therapy
New method could lead to safer stem cell-derived diabetes treatments

Artificial Intelligence Feeds Need for Speed
Technology is being used to fast-track radiation therapy plans and conserve clinical resources

From Building Blocks to BlueRock
BlueRock Therapeutics receives historic investment to advance stem cell research

Support: New funding spurs world-class innovation

Discovery: A selection of top research findings

Impact: How research at UHN is improving health care

UHN Foundations

Research Distinctions
Research Institutes
Research Committees
External Sponsors
Financials
Research Trustee and Advisory Boards
Welcome Message

Pushing the Limits

High-performance athletes train for years to become the best in their field. They consistently push themselves beyond what they are capable of, honing their skills through an unwavering drive. And once they’ve attained their goal—it breaking a personal best, winning a gold medal or shattering a world record—it’s on to the next challenge.

The same can be said of our researchers.

Our researchers tirelessly work to better understand disease, improve the delivery of care, and the effectiveness and efficiency of the health care system. Along with clinicians, health care professionals, funders and patients, they make a united front to define the most important unmet needs. And together they work to address these needs while setting and achieving goals that are far beyond what would be possible as individuals.

Some of our researchers set their sights on creating a better understanding of disease as a path towards improved health. Examples include those who reveal new molecular targets that lead to the development of better, more specific therapeutic drugs; those who identify gaps in care that inform new, more effective clinical tools and policies; and those who find better ways to bring basic research findings to the clinic to help patients. This knowledge can be translated into a better approach to doing something, whether it’s a research method, therapeutic strategy or way of performing surgery. These solutions continually enhance and refine the delivery of health care.

Emerging technologies have enabled other researchers to improve care at an increasingly faster pace. These technologies include advanced DNA sequencing approaches that reveal the complexities of the human genome with unprecedented speed. Our researchers are also developing machine learning methods to reduce the time it takes to plan treatments, so that patients get the care they need sooner. Both examples demonstrate how our researchers are using these technologies to their fullest potential to accelerate the application of research, the delivery of quality care and to ease the burden on the health care system by reducing wait times.

Others still are building stronger systems. Our researchers are experts in regenerative approaches to repair damaged organs, and leaders in developing rehabilitation programs to strengthen patients’ minds and bodies as they age or recover from life-threatening situations. Some are translating their work by commercializing new products or founding new companies through history-making investments from private sector partners; these deliverables fortify the bioeconomy and reinforce the profile of Toronto’s research ecosystem on the world stage. Regardless of the means, those engaged in these activities strive to build robust systems—from cells, tissues and organs to networks, consortia and companies—towards enriching human health and wellbeing.

We hope you will enjoy the examples we selected in this year’s report to highlight how our researchers are helping to make health care better, faster and stronger.
Why Some Gain When Under Pain

More flexible communication in the brain could make pain less of a distraction while performing a task

Despite being hampered by painful injuries, many athletes continue to compete and win. For example, Toronto Maple Leafs defenceman Bobby Baun played several playoff games with a broken ankle and helped his team win the Stanley Cup in 1964.

Why is it that some individuals can perform a task—and do it well—while experiencing pain?

“There is a complex relationship between pain and attention, where pain can modulate attention and vice versa. Moreover, the interplay between these two factors differs from one person to the next,” explains Dr. Karen Davis.

Dr. Davis has shown that individuals can be classified as one of two types depending on how pain affects their performance in doing a task. In P-type individuals, pain impedes their ability to perform a task; whereas, in A-type individuals, like Bobby Baun, pain enhances their performance.

To gain a better understanding of the brain mechanisms that contribute to this divergent behaviour during pain, Dr. Davis and her PhD student Joshua Cheng led a study examining patterns of brain activity in these two groups.

First, 51 healthy participants were classified as either A-type or P-type based on their performance in a complex mental task in the presence and absence of a painful stimulus. Next, the participants underwent a functional MRI (fMRI) scan, while they were not thinking of anything in particular, to measure their spontaneous brain activity.

The researchers focused their study on the activity of brain cells in two networks: the executive control (EC) network and the salience network. The EC network helps to optimize a person’s behaviour in response to what’s happening around them; whereas, the salience network is normally engaged when something like pain draws your attention.

Through their analysis, Dr. Davis and her research team discovered a link between spontaneous brain activity and task performance with pain. The synchrony of activity between the EC network and the salience network, as well as within the salience network, was more flexible in A-type individuals than P-type individuals. These findings suggest that brain communication is more flexible in A-type individuals—a feature that could be important for prioritizing task performance over pain, producing better performance.

Regarding her future work, Dr. Davis says, “We’d like to explore whether communication flexibility is disrupted in chronic pain and how it is altered by treatments for chronic pain—including surgery, medications and cognitive-behavioural therapy. This will improve our understanding of the mechanisms underpinning chronic pain, which will be instrumental for developing more effective and personalized therapies for this debilitating condition.”

Cheng JC et al. Neuroimage. 2017 Aug 15;157:61-68. Supported by the Canadian Institutes of Health Research and the Toronto General & Western Hospital Foundation.
“When I play hockey, my mind is so focused on the game and scoring a goal that I don’t feel my recurring back and knee pain,” confides Dr. Davis, an avid hockey player and Leafs fan.
Images: (panel on left) Dr. Davis is pictured in her hockey gear; (on this page) the battle that takes place in the brain between pain and attention is illustrated by two hockey players facing off.
The best defence is a good offence. This adage, often applied to sports or military strategies, suggests that attacking one’s opponent offers the greatest protection. Researchers and clinicians are taking this approach to fight cancer—developing powerful new therapies that seek out and kill cancer cells.

One such approach is immune therapy: it works by boosting the number and activity of tumour-infiltrating lymphocytes (TILs), immune cells that go on the offensive by migrating into tumours to target and destroy them. Although this strategy holds promise, challenges remain because certain tumours have developed defence mechanisms that block TIL activity.

These tumours, however, are no match for Dr. Pamela Ohashi. She is a pioneer in figuring out how the immune system interacts with cancer in order to develop new immune therapies.

In an article published in the prestigious journal Nature Medicine, Dr. Ohashi and her research team revealed that an internal battle may be going on: they found that certain ovarian tumours contain other immune cells, called regulatory innate lymphoid cells (ILCregs), that block the activity of cancer-fighting TILs. The ILCregs did this in two ways: they reduced the ability of TILs to grow and multiply, and altered the ability of the TILs to attack cancer cells.

The team also found that the tumours from some patients contained ILCregs, while those from others did not, suggesting that some tumours may be able to attract or promote growth of ILCregs.

“By looking at tumour biology from this different perspective, we have a better understanding of the barriers that prevent a strong immune response,” explains Dr. Ohashi. “Our research reveals a promising new strategy to develop combined therapies that simultaneously target ILCregs while promoting TIL growth and function—delivering a stronger ‘one-two punch’ against the disease.”

Building on these findings, her team is now developing a test to identify ILCregs in patients, which may help predict whether the patient will respond to immune therapy. Dr. Ohashi says, “This knowledge would help doctors and patients make more informed medical decisions, personalize cancer treatment and ultimately improve the effectiveness of immune therapies.”

Immune therapies work by helping the immune system to target and kill cancer.

Crome SQ, et al. Nat Med. 2017 Mar;23(3):368-375. Supported by the Canadian Institutes of Health Research, the Cancer Research Institute/Irvington Institute, the Canada Foundation for Innovation, the Ontario Ministry of Research, Innovation and Science, the Alexander von Humboldt Foundation, the German Research Council, the National Institutes of Health, the Parker Institute for Cancer Immunotherapy and The Princess Margaret Cancer Foundation. P Ohashi is a Tier 1 Canada Research Chair in Autoimmunity and Tumour Immunity.

Image: (opposite page) just as a chess player uses offensive and defensive strategies to win, Dr. Ohashi is finding ways to weaken cancer’s defences while boosting the body’s immune system.
How you speak says a lot about you. A hurried voice can show that you are in a rush, while the tone of your voice can reveal emotion and mood.

How you speak can also uncover deeper truths: it can provide insight into your mental health. For example, speech can be used to diagnose aphasia, a disorder caused by brain damage that compromises an individual’s ability to speak, write or understand language.

“While speech analysis represents a powerful approach to diagnose certain disorders, this method typically relies on tedious ‘paper-and-pencil’ tests that are time consuming and costly to administer and interpret,” says Dr. Frank Rudzicz.

To address the shortcomings of traditional speech-based tests, Dr. Rudzicz’s team has combined subtle differences in speech patterns with the power of artificial intelligence (AI) to create a clinical tool that can quickly diagnose Alzheimer disease.

Alzheimer disease progressively damages the brain, impairing memory. Although memory loss is the most definitive symptom, speech may be a more sensitive indicator of brain function: not only do speech deficits appear early in the disease, but they also worsen as it progresses.

As a first step toward developing the new clinical tool, the research team identified the most prevalent speech deficits in Alzheimer disease. They did this by analyzing brief speech samples from 264 participants (167 with Alzheimer disease and 97 without).

For each audio sample, 370 features of speech were examined, such as vocabulary richness, vowel articulation and pauses between words. Next, the researchers used this data to teach an AI algorithm how to identify Alzheimer disease. The resulting speech-based diagnostic program was able to detect the disease with an accuracy of more than 80%. Not only is the new program just as accurate as traditional assessment methods, but it is faster, cheaper and more sensitive.

Dr. Rudzicz incorporated these findings into a set of assessment tools that can detect a variety of disorders including aphasia and types of dementia. This platform can also be used to monitor disease progression and the effectiveness of new treatments.

To bring this technology to market, Dr. Rudzicz co-founded the spin-off company WinterLight Labs. The result: an online app that is accessible and easy to use. From the comfort of their own home, patients can upload a short voice recording describing what they see in an image—such as a picture taken during a camping trip. Within seconds, the speech sample is analyzed to generate a set of scores describing speech deficits and mental function, which are then interpreted by clinicians.

WinterLight’s app offers a healthier future: one day your phone may be able to notify you at the earliest sign of disease so that preventative therapies could be started to help you stay healthy and active.

“WinterLight’s platform could help doctors make accurate diagnoses faster.”
That night it was clear and they had left so...
On Target for Cell Therapy

New method could lead to safer stem cell-derived diabetes treatments

Looking at things from a different angle can often lead to new and better solutions. That’s because a fresh perspective can help to inspire creativity, innovative thinking and collaboration.

It’s also why Dr. Cristina Nostro and her team recently embarked on a new collaborative project to solve a particularly difficult research problem: how to reliably isolate a specific pancreatic cell type capable of improving current treatments for type I diabetes.

Type I diabetes is a chronic condition in which cells in the pancreas—known as beta cells—are destroyed so little to no insulin is produced. Without insulin, the body is unable to keep blood sugar levels within a healthy range. When blood sugar levels remain consistently high for a prolonged period of time, serious conditions can develop, including heart disease, vision loss, kidney disease and nerve damage.

Transplanting healthy beta cells into the pancreas can restore insulin production and decrease the number of insulin injections needed to maintain normal sugar levels. However, widespread use of this treatment is hampered by a limited supply of donor beta cells for transplantation.

Using stem cells, Dr. Nostro has addressed this issue by developing a reproducible method for generating large numbers of cells that can safely give rise to insulin-producing beta cells. The technique, which mimics what occurs during pancreas development, forces stem cells to mature into daughter stem cells (pancreatic progenitors) that then develop into insulin-producing beta cells.

Unfortunately, the technique also produces progenitors that mature into cells that do not produce insulin. The problem: these contaminating progenitors need to be removed before the therapeutic insulin-producing cells can be safely used in the clinic.

Dr. Nostro teamed up with Dr. Thomas Kislinger to explore an entirely new approach to solving this problem. Together they identified specific proteins that are found on the surface of the pancreatic progenitors. They then used one of the proteins—known as Glycoprotein 2—to isolate the pancreatic progenitors and remove the contaminating cells. This allowed them to not only control the number but also the purity of the newly generated insulin-producing cells.

“Our long-term goal is to cure type I diabetes using transplants of insulin-producing cells, so it is crucial to have cells that are safe and pure,” explains Dr. Nostro. “The technique we’ve developed provides a better, more reliable method for generating large quantities of these cells for use in the clinic.”

Cogger KF, et al. Nat Comm. 2017 Aug 24;8(1):331. Supported by the McEwen Centre for Regenerative Medicine and the Toronto General & Western Hospital Foundation, the Banting and Best Diabetes Centre, the Canadian Institutes of Health Research, the Ontario Ministry of Health and Long-Term Care, the National Institutes of Health, the Juvenile Diabetes Research Foundation, the US Department of Veterans Affairs and the Vanderbilt Diabetes Research and Training Center.
“This new approach will help us to develop safer stem cell therapies for diabetes.”
In their quest to improve stem cell-derived diabetes treatments, Dr. Nostro (pictured) and her team developed an approach to reliably target and isolate insulin-producing beta cells (depicted as fluorescently labelled green and blue cells).
Within seconds, the WinterLight platform can analyze over 400 features in recorded speech samples to assess a person’s mental function.

To learn more, please visit the WinterLight Labs website: http://www.winterlightlabs.com/
Artificial Intelligence Feeds Need for Speed

Technology is being used to fast-track radiation therapy plans and conserve clinical resources

Radiation therapy is simple in its concept: high-energy radiation can damage and destroy cells, so beams of radiation are directed at a tumour to kill cancer cells. However, the treatment must also carefully minimize the dose to nearby organs.

Actually creating a plan that balances these conflicting requirements can be incredibly complex—it requires dedicated time from a team of highly trained experts. Each patient’s anatomy and tumour shape are unique, and it takes a lot of clinical resources and expertise to create a high-quality plan.

That may not be the case for much longer. Dr. Thomas Purdie and his team, including Dr. Chris McIntosh, have used the power of artificial intelligence (AI) to develop a new system that can create a high-quality plan in minutes—faster than current approaches, which can take days. The technology, known as AutoPlanning, uses machine learning to harvest information from a massive database of proven radiation therapy plans from Princess Margaret Cancer Centre.

While no two patients are identical, there can be similarities. The AutoPlanning AI can evaluate many features in a patient’s images, and find other patients in the database with similar features. Then, it builds a radiation therapy plan for the new patient based on information in the plans of patients with similar features.

With thousands of high-quality plans to learn from, the system rapidly adapts and optimizes the plan to suit the new patient.

“The technology allows radiation medicine teams to take on more complex cases and provide precision medicine to more patients,” says Dr. Purdie.

Earlier this year, UHN announced that AutoPlanning has been licensed to RaySearch Laboratories of Sweden with the help of UHN’s Technology Development and Commercialization Office. The deep learning algorithms of the AutoPlanning system will be integrated into RaySearch’s RayStation treatment planning system next year. Johan Löf, CEO of RaySearch, says, “This technology has the potential to make a huge contribution to patient care. I am delighted to be able to bring its benefits to centers around the world as part of the RayStation platform.”
From Building Blocks to BlueRock

BlueRock Therapeutics receives historic investment to advance stem cell research

Toronto’s stem cell and regenerative medicine ecosystem gained a major player with the establishment of a new biotechnology company, BlueRock Therapeutics, in December 2016. The company, co-founded by world-renowned UHN researchers, Drs. Gordon Keller and Michael Laflamme, will advance novel stem cell-based treatments for a variety of diseases, such as cardiovascular disease and Parkinson disease, in a state-of-the-art 10,000 square foot facility.

One of the first innovations that will be developed by the company is an approach to regenerate and repair damaged heart muscles, co-created by the two UHN researchers. Drs. Keller and Laflamme developed a way to coax stem cells into becoming specialized heart muscle cells called cardiomyocytes. These cells, when introduced into the heart, act like building blocks—incorporating into the heart tissue and making the heart stronger by repairing muscle damage caused by heart attacks or abnormal heart rhythms.

“We’ve had a lot of research breakthroughs in the past several years and with BlueRock we can now move them from the laboratory to the clinic to help patients,” said Dr. Laflamme during the launch event, which was attended by federal and provincial ministers and the Premier of Ontario.

BlueRock was made possible by Bayer AG and Versant Ventures, who provided US$225 million in seed funding. The funds, which represent one of the largest biotechnology investments in history, will be used to build and support research and development facilities in Toronto, New York and Boston. The Toronto facility will employ up to 70 scientists and technical staff when fully functional.

Sparked by the discovery of stem cells at UHN more than 50 years ago, the local stem cell research community is home to leading centres such as UHN’s McEwen Centre for Regenerative Medicine and the Centre for Commercialization of Regenerative Medicine. BlueRock now joins this vibrant cluster of excellence in regenerative medicine, reinforcing Toronto’s world-class reputation in the field.

BlueRock builds upon Toronto’s excellence in stem cell research.

“The concentration of stem cell research resources and expertise that we have is unparalleled,” says Dr. Keller, who is also the Director of the McEwen Centre. “Establishing BlueRock Therapeutics is a visionary move that will lead to new therapies for currently untreatable diseases.”

UHN’s Technology Development and Commercialization Office worked closely with all partners to negotiate and execute the license agreements for the foundational intellectual property, as well a master research agreement to fund future work.

Image: (L-R) Dr. Gordon Keller and Dr. Michael Laflamme.
Therapies are being developed by BlueRock that involve coaxing stem cells into becoming specialized heart muscle cells, which are reintroduced into damaged hearts to restore function.
Support

New funding spurs world-class innovation

Federal Support for Basic Research
UHN was the top-funded research hospital in the Canadian Institutes of Health Research’s 2016–2017 Foundation and Project Grant Program competitions.

For the Foundation Grant Program competition, UHN received a total of $22.9 million in funding for eight awards—representing the second highest number of awards given to a single institution and a success rate almost double the national average.

These projects were led by Dr. Cheryl Arrowsmith (gene packaging in cancer), Dr. Robert Chen (brain connections in movement disorders), Dr. Myron Cybulsky (immune cells in blood vessel disease), Dr. John Dick (leukemia stem cells), Dr. Mitsu Ikura (the role of calcium in cancer growth), Dr. Rama Khokha (genetic and environmental factors driving cancer), Dr. Aaron Schimmer (therapeutic strategies for leukemia) and Dr. Gang Zheng (nanotechnology for anti-cancer drug delivery).

Similarly, UHN fared well above the national average in the Project Grant Program competition, with 22 projects receiving a total of $17.9 million.

Funding Proactive Research
A team of researchers led by Dr. Rosemary Martino received US$8.5 million from the Patient-Centered Outcomes Research Institute. The funding will support a multi-site study, called PRO-ACTIVE, that will focus on evaluating the effectiveness of proactively providing therapy to help those with head and neck cancer who experience difficulty swallowing. These patients often experience serious difficulties swallowing as a result of the location of the tumour or the radiotherapy used to treat it.

Multidisciplinary expertise across UHN will support the study: Quantitative Imaging for Personalized Cancer Medicine will provide medical imaging and radiation therapy solutions to enhance the reliability of study data; and Health Informatics Research will customize technology solutions to support the high-quality collection of patient-reported outcomes and clinical research data.

PRO-ACTIVE was selected through a highly competitive review process in which patients, caregivers and other stakeholders joined scientists to evaluate the proposals.
Building Capacity for Innovation
The Canada Foundation for Innovation awarded $20.9 million to UHN for state-of-the-art research infrastructure. Through its Innovation Fund, two projects received large-scale awards. The first was the Princess Margaret Cancer Centre Precision Medicine Program (led by Dr. Brad Wouters), which was granted $11.8 million—the second largest award in this competition—to develop new ways of profiling tumours. The second, CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) (led by Dr. Milos Popovic), was awarded $6.5 million to create new therapies for neurological diseases and conditions.

Advancing Cancer Immune Therapy
Two projects, led by UHN researchers Dr. Pamela Ohashi and Dr. Mathieu Lupien, were selected for funding by the Terry Fox Research Institute.

Dr. Ohashi will receive $5.41 million to advance her investigations into the use of cancer immune therapy—a strategy that uses the body’s immune system to kill cancer cells. A world-renowned pioneer in this field and the Co-Director of UHN’s Tumour Immunotherapy Program, Dr. Ohashi will use the funds to develop and evaluate new immune therapies for high-grade serous ovarian cancer, the deadliest type of ovarian cancer.

Dr. Lupien will receive $2.25 million towards his immune therapy research. His project will focus on advancing immune therapy for women with triple-negative breast cancer, a type of cancer that tends to have lower survival and higher recurrence rates.

These projects were two of six funded projects, representing approximately 30% of total funds awarded nationally.
Discovery

A selection of top research findings

Clearing the Way
Nanoparticles are microscopic particles that can be linked to anti-cancer drugs for delivery to tumours. While effective in experimental systems, nanoparticles often fail in patients because they become trapped in the liver and do not reach the tumour.

To identify the reason for this, a team led by Dr. Ian McGilvray and the University of Toronto’s Dr. Warren Chan examined how nanoparticles interact with liver cells. They found that nanoparticles slow down upon entry into the liver from the bloodstream—giving liver cells time to eliminate them from the body.

The Magnificent 17
A research team led by Dr. Jean Wang has developed a genetic test that better predicts which leukemia patients will respond to standard therapies. The test’s prediction is based on 17 genes found in leukemia stem cells, which are instrumental in disease initiation and recurrence.

The test was created to help those with a type of leukemia known as acute myeloid leukemia, which is notoriously difficult to treat: standard therapies fail in up to 60% of young adults and 85% of older adults with the disease.

By identifying which patients will not respond to standard therapies, the test could help avoid unnecessary treatments, and identify those who may benefit from more experimental or intensive treatment strategies. Plans are underway to evaluate the test in a clinical trial. Ng SW, et al. Nature. 2016 Dec 15;540(7633):433-437.

Stroke of Genius
This year, a first-of-its-kind app was launched to provide clinicians with best practice rehabilitation strategies for patients with arm impairments due to stroke.

The ViaTherapy app, developed through a global collaboration led by rehabilitation researchers Drs. Mark Bayley and Steven Wolf (Emory University), is the result of more than five years of research by a panel with expertise in physiatry, neurology and physical and occupational therapy.

The app assists physicians in recalling established stroke therapies and in learning about new ones, making it easier for them to evolve their treatment plans based on how far along the patient is in their recovery. www.viatherapy.org.
A Gut Reaction
A study led by Dr. Robert Inman showed that immune cells originating in the gut may promote disease in a form of arthritis known as ankylosing spondylitis (AS).

This type of arthritis is characterized by painful swelling in the back and neck joints that occurs when the immune system attacks the body’s cells.

Dr. Inman discovered a type of immune cell that develops in the gut—known as a mucosal-associated invariant T cell—and that promotes harmful joint inflammation.

These findings strengthen the possibility that immune cells originating in the gut play a role in AS, while providing new molecular targets that could inform the development of new treatments. Gracey E, et al. Ann Rheum Dis. 2016 Dec;75(12):2124-2132.

Assisted Dying at UHN
A report describing UHN’s implementation of an assisted dying program, led by Dr. Madeline Li, was published in the New England Journal of Medicine.

Since February 2016, medical providers in Canada have been delivering medical assistance in dying (MAiD) to eligible patients. However, there is little information on the best way to implement MAiD in a hospital. UHN’s report is intended to help address this knowledge gap.

Briefly, UHN’s program consists of voluntary medical teams who assess eligibility, ensure informed consent and deliver the intervention. It also includes a committee that provides oversight, reports metrics and stewards data. During its first year of operation, the program provided MAiD to 19 patients. Li M, et al. N Engl J Med. 2017 May 25;376(21):2082-2088.

Protecting Brains
More than 216 million people worldwide suffer from malaria, a disease caused by parasite-infected mosquitos. If left untreated, it can progress to cerebral malaria, which can cause irreversible brain damage and death.

Based on the observation that people with cerebral malaria have low levels of the protein Ang-1, Dr. Kevin Kain used experimental models to gain a better understanding of the role of Ang-1 in the disease. He found that Ang-1 protects blood vessels in the brain during cerebral malaria, and that treatment with Ang-1 improved survival compared to treatment with conventional therapy. These exciting findings suggest that Ang-1-based therapies can be developed and tested to improve outcomes for this globally relevant disease. Higgins SJ, et al. Sci Transl Med. 2016 Sep 28;8(358):358ra128.
Impact

How research at UHN is improving health care

Safety Device Inspired by Nature
NeuroShield has been referred to as an ‘airbag for the brain’. It was launched by Bauer, a leading hockey equipment manufacturer, at a press conference attended by the company’s spokesman and hockey legend Mark Messier.

The collar-like device sits around an athlete’s neck and applies a slight pressure, increasing the volume of venous blood in the brain. The excess blood creates a ‘cushion’ between the skull and the delicate tissues of the brain, protecting the latter against the microscopic damage caused by blows to the head. The concept for the device was inspired by the woodpecker’s physiology, which protects the bird’s brain while drumming its beak against trees.

Dr. Joseph Fisher was one of the three clinicians who developed NeuroShield. The device was evaluated for safety in clinical trials involving high school soccer and football players, although device’s ability to protect against concussions has not yet been validated. Q30 Innovations, a US-based research and development company, acquired the commercial rights for the device and partnered with Bauer to bring it to market.

A Superior Test for Sleep Apnea
An at-home sleep apnea test known as BresoDx is now available to Ontario patients for the first time as the result of a unique MaRS program.

The breakthrough device—invented by Drs. Hisham Alshaer, T Douglas Bradley and Geoff Fernie—is available at sleep clinics across the province. Ontario patients can use BresoDx to test for sleep apnea in the comfort of their homes rather than in a sleep laboratory. It is the first technology to complete the MaRS EXCITE program, an innovative initiative that accelerates the adoption of health technology in Ontario.

Sleep apnea affects around 10% of adults, yet fewer than 15% of North Americans who have the condition have been diagnosed. Left untreated, sleep apnea leads to chronic sleeplessness and an increased risk of developing more serious conditions such as stroke and heart failure.

By enabling the launch of BresoDx across the province, the Ministry of Health and Long-Term Care is paving the way for early diagnosis and treatment of sleep apnea.
Sights Set on Helping the World
MolecuLight i:X is a handheld device that uses fluorescence imaging to visualize bacteria in wounds. The device provides doctors with a quick readout of the status of wounds and infections—providing important health insights that are otherwise invisible to the naked eye.

The technology was developed at UHN by Dr. Ralph DaCosta and spurred the creation of the MolecuLight spin-off company. Now, it is poised for world-wide adoption: a distribution agreement has been signed between MolecuLight and UK-based Smith & Nephew that will put the technology into the hands of clinicians and patients around the world.

“MolecuLight i:X enhances clinicians’ ability to choose the right therapy, at the right time for their patient,” says Dr. Andy Weymann, Chief Medical Officer at Smith & Nephew. The device’s ability to visualize wounds and infections will help guide wound management and treatment, contribute to the monitoring of hospital-acquired infections, and aid hospital-based programs that aim to minimize unnecessary use of antibiotics.

Dr. Christopher Paige received the 2016 award for his work in immune-oncology. He developed a therapeutic approach whereby a patient’s cancer cells are removed, engineered to produce certain chemical messengers and re-introduced to the patient, which then stimulates immune cells to have potent anti-cancer activity. A clinical trial is now underway and the technology was licensed by the UHN company AvroBio Inc.
UHN Foundations
Making a difference by helping research grow

The Princess Margaret Cancer Foundation
Toronto General & Western Hospital Foundation
Toronto Rehab Foundation
This year, The Princess Margaret (PM) Cancer Foundation launched its Transformation Campaign. With a goal of raising $50 million in donations, the campaign supports a multi-phase project to transform the facilities at PM Cancer Centre—improving the patient experience from the moment they step through the doors.

Approximately one in six patients volunteers to participate in a clinical trial during their cancer journey. These patients collectively donate more than 26,000 blood samples each year toward finding new and improved ways of treating cancer. The efficient collection, management and storage of these precious samples are critical to bench-to-bedside research.

To this end, part of the Transformation Project will include a redesign of the Blood Collection Centre. It will undergo an expansion and reorganization to accommodate three more accessible collection stations, an expanded reception and waiting area and key functional upgrades.

The redesigned facility will enable blood samples to be analyzed in a more rapid and efficient manner, delivering robust information to scientists for discovering new ways to individualize cancer care. One such approach is the examination of circulating tumour DNA, which comprises genetic material that is released into the blood by certain tumours. By decoding the sequence of this genetic material, scientists can develop tests to monitor a patient’s response to therapy or to predict the effectiveness of novel anti-cancer drugs.

“This project will facilitate clinical research, helping to ensure that our world-class team can meet the individual needs of every patient,” explains Dr. Mary Gospodarowicz, Medical Director of the PM Cancer Centre.

By providing a seamless integration of research throughout the cancer journey, this highly functional transformation will advance the institution’s commitment to patient-centered care. It will also accelerate research and innovation of new treatments and technologies that put patients’ needs first.
A Night of Discovery
Toronto General & Western Hospital Foundation

The first Discovery Ball—a fundraising initiative led by Toronto General & Western Hospital Foundation—took place on October 15, 2016. The goal of the event was to promote the Krembil Research Institute’s research successes and raise money to support research into cures for diseases of the brain, spine, bones, joints and eyes.

A candid conversation between Krembil Director Dr. Donald Weaver and science communicator Jay Ingram was featured on the main stage. Researchers in attendance wore “ask me about my research” buttons, encouraging discussions on the valuable work happening at the Krembil and giving the philanthropists an opportunity to understand how important their contributions were to developing cures, while creating an air of collaboration and discovery.

The Discovery Ball was the brainchild of Stacey Krembil, who was also co-chair of the planning committee with Dr. Michael Baker, who hosted the event. The night was well attended, with nearly 400 distinguished guests, including philanthropists, UHN leadership and Krembil-affiliated researchers.

The event included a raffle for prizes such as a diamond rivière necklet and a live auction, hosted by broadcaster, award-winning writer and producer Husein Madhavji capped the event. The highest bidders won the opportunity to tour the labs of Dr. Weaver and Krembil Senior Scientist Dr. Mohit Kapoor, a prize that further underscored the discovery theme.

The event pairs people committed to advancing health care with Krembil researchers.

The event raised nearly $1 million to support research at the Krembil. Because of its success, the Discovery Ball will continue as a staple of the Toronto General & Western Hospital Foundation’s fundraising efforts, with the next event scheduled for October 2018.
At Toronto Rehabilitation Institute (TRI), researchers work tirelessly to develop new therapies and products that restore function after illness or injury and enable independent living within the community.

In October 2015, the Toronto Rehab Foundation launched its *Where Incredible Happens* campaign, which aims to raise $100 million to support TRI researchers, programs and facilities, which are instrumental in developing life-changing inventions. Inspired by TRI’s work, Dean Connor, the President and CEO of Sun Life Financial and a Vice-Chair of UHN’s Board of Trustees, agreed to lead the campaign.

Dean and his wife, Maris Uffelmann, demonstrated their personal commitment to the campaign through an incredible $1 million gift to support TRI’s Rehabilitation Engineering Lab (REL). REL is located at Toronto Rehab’s Lyndhurst Centre, home of Canada’s largest rehabilitation program devoted to spinal cord injuries.

"There are few moments in life when you have the power to significantly improve the lives of people around you," says Dean. "We are happy to be able to help.”

REL is led by Dr. Milos Popovic, the TRI Chair in Spinal Cord Injury Research, and employs more than 40 researchers, trainees and staff. Dr. Popovic’s research has yielded novel technologies—such as functional electrical stimulation therapy—that produce unparalleled levels of recovery in people affected by stroke or spinal cord injuries: they have improved patients’ balance and restored their ability to walk, reach and grasp objects. His research is also making important advances in brain-machine interfaces, functional assessment tools, rehabilitation techniques and neuroprosthesis systems.

Dean and Maris’s generous gift is enabling REL to undertake two high-risk, high-payoff projects. The funds are supporting trainees and staff examining the use of electrical stimulation to treat depression and of brain-machine interfaces to restore upper-limb function in stroke survivors.
Research Distinctions
Selected honours bestowed upon UHN researchers

Dr. Elizabeth Badley
2017 Distinguished Scholar Award, Association of Rheumatology Health Professionals

Dr. Philippe Bedard
2017 William E. Rawls Prize, Canadian Cancer Society

Dr. David Cescon
2017 Dr. Elizabeth Eisenhauer Early Drug Development Young Investigator Award, Canadian Cancer Trials Group

Dr. Vinod Chandran
2017 Young Investigator Award, Canadian Rheumatology Association

Dr. B Catharine Craven
2017 Award of Merit, Canadian Association of Physical Medicine & Rehabilitation

Dr. Marcelo Cypel
Tier 2 Canada Research Chair in Lung Transplantation (renewal)

Dr. Karen Davis
2017 Outstanding Pain Mentorship Award, Canadian Pain Society

Dr. Daniel De Carvalho
Tier 2 Canada Research Chair in Cancer Epigenetics and Epigenetic Therapy

Drs. Daniel De Carvalho and Mathieu Lupien
2017 Bernard and Francine Dorval Prize, Canadian Cancer Society

Dr. Eleftherios Diamandis
2017 Lifetime Achievement Award, Ontario Society of Clinical Chemists

Dr. John Dick
2017 Tobias Award Lecture, International Society for Stem Cell Research
2016 Gold Leaf Prize for Discovery, Canadian Institutes of Health Research
Tier 1 Canada Research Chair in Stem Cell Biology (renewal)
2017 Keio Medical Science Prize, Keio University

Dr. Michael Fehlings
2017 David Lostchuck Memorial Research Award, Canadian Spinal Research Organization

Dr. Eleanor Fish
2017 Leadership in Advocacy Award, Research Canada

Dr. Mary Gospodarowicz
2017 Wendy Lack Women of Action Scientific Award, Israel Cancer Research Fund

Dr. Housheng Hansen He
2017 New Investigator Award, The Terry Fox Research Institute

Dr. Mitsuhiko Ikura
Tier 1 Canada Research Chair in Cancer Structural Biology (renewal)

Dr. Jonathan Irish
President, American Head & Neck Society

Dr. Michael Jewett
2017 Exceptional Leadership in Patient Involvement in Cancer Research Award, Canadian Cancer Research Alliance

Dr. Anthony Lang
2017 MDS Pan-American Section Leadership Award, International Parkinson and Movement Disorder Society
Dr. Gary Levy
2017 Lifetime Achievement Award, Canadian Society of Transplantation

Dr. Andres Lozano
2017 Khwarizmi International Award, Iranian Research Organization for Science and Technology
2017 Bachmann-Strauss Prize for Excellence in Dystonia Research, Michael J. Fox Foundation for Parkinson’s Research

Dr. Mary Pat McAndrews
2017 Excellence in Research Award, Canadian League Against Epilepsy

Dr. Brian O’Sullivan
2017 O. Harold Warwick Prize, Canadian Cancer Society

Dr. Amit Oza
GOC Presidential Medal, Society of Gynecologic Oncology of Canada

Dr. Christopher Paige
2017 Leadership in Advocacy Award, Research Canada

Dr. Kara Patterson
2017 Innovation and Advancement Award, Ontario Physiotherapy Association

Dr. Trevor Pugh
2017 New Investigator Award, The Terry Fox Research Institute

Dr. Milica Radisic
2017 Steacie Prize for Natural Sciences, E.W.R. Steacie Memorial Fund
Tier 2 Canada Research Chair in Functional Cardiovascular Tissue Engineering (renewal)

Dr. Gary Rodin
2017 Bernard Fox Memorial Award, International Psycho-Oncology Society

Dr. Frances Shepherd
2017 Addario Lectureship Award, Bonnie J. Addario Lung Cancer Foundation
2017 Women for Oncology Award, European Society for Medical Oncology

Dr. Lillian Siu
Member, Board of Directors, American Association for Cancer Research

Dr. Charles Tator
Officer, Order of Canada (promotion from Member)

Dr. Ming-Sound Tsao
2016 Dr. Joseph Pater Excellence in Clinical Trials Research Award, Canadian Cancer Trials Group

Dr. Michael Tymianski
Member, Order of Canada

Dr. Murray Urowitz
2017 Distinguished Clinical Investigator Award, American College of Rheumatology

Dr. Sharon Walmsley
Member, Order of Canada

Dr. Minna Woo
Tier 2 Canada Research Chair in Signal Transduction in Diabetes Pathogenesis (renewal)

Dr. Bradly Wouters
Tier 1 Canada Research Chair in Hypoxia and the Tumour Microenvironment

Dr. Azadeh Yadollahi
Early Researcher Award, Ontario Ministry of Research, Innovation and Science

Dr. José Zariffa
Early Researcher Award, Ontario Ministry of Research, Innovation and Science
UHN Research Institutes

Krembil Research Institute

Princess Margaret Cancer Centre

Toronto General Hospital Research Institute

Techna Institute

Toronto Rehabilitation Institute
Krembil Research Institute

TOTAL RESEARCHERS 216
Total Appointed Researchers 92
Senior Scientists 31
Scientists 11
Affiliate Scientists 15
Emeritus 2
Clinician Investigators 33
Clinical Researchers 124

RESEARCH SPACE 154,001 sq. ft.

EXTERNAL FUNDING $52,659,561

TOTAL TRAINEES 120
Fellows 48
Graduate Students 72

TOTAL STAFF 276

PUBLICATIONS 947

Research Council
Director and Chair, Krembil Research Institute Donald Weaver
Division Head, Fundamental Neurobiology Peter Carlen
Division Head, Healthcare & Outcomes Research Aileen Davis
Division Head, Brain Imaging & Behaviour – Systems Neuroscience Karen Davis
Division Head, Genetics & Development James Eubanks
Co-Director, Donald K. Johnson Eye Institute Valerie Wallace
Clinical Representative, Arthritis Program Robert Inman
Research Director, Arthritis Program Mohit Kapoor
Medical Director, Arthritis Program Nizar Mahomed
Chair, Trainee Affairs Committee Frances Skinner
Executive Director, Research Operations Lisa Alcia
Vice President and Site Lead, Toronto Western Hospital Janet Newton
Executive Vice President, Science and Research Bradly Wouters

Researchers

Brain, Imaging & Behaviour-Systems Neuroscience
Senior Scientists
Jonathan Brotchie
Robert Chen
Karen Davis
William Hutchison
Sidney Kennedy
Andres Lozano
Mary Pat McAndrews
David Mikulis
Antonio Strafella
Scientists
Jonathan Downar

Affiliate Scientists
Mojgan Hodaie
Mark Gutman
Clement Hamani
Walter Kucharczyk

Fundamental Neurobiology
Senior Scientists
Peter Carlen
Frances Skinner
Shuzo Sugita
Michael Tymianski
Donald Weaver

Scientists
Jérémie Lefebvre
Ivan Radovanovic
Taufik Valiante

Affiliate Scientists
Magdy Hassouna
Liang Zhang
Georg Zoidl

Genetics & Development
Emeritus
Charles Tator
Senior Scientists
Cathy Barr

James Eubanks
Michael Fehlings
Robert Inman
Mohit Kapoor
Lyanne Schlichter
Elise Stanley
Joan Wither

Scientists
Nigil Haroon
Lorraine Kalia
Suneil Kalia
Armand Keating
Affiliate Scientist
Sowmya Viswanathan
Healthcare & Outcomes Research
Emeritus
Murray Urowitz
Senior Scientists
Elizabeth Badley
Aileen Davis
Dafna Gladman
Nizar Mahomed
Scientist
Anthony Perruccio
Affiliate Scientists
Vinod Chandran
Paul Fortin
Monique Gignac
Rosemary Martino

Patient-based Clinical Research
Senior Scientist
Anthony Lang

Donald K. Johnson Eye Institute
Senior Scientists
Philippe Monnier
Christopher Hudson
Valerie Wallace
Agnes Wong
Scientist
Jeremy Sivak
Affiliate Scientists
Moshe Eizenman
John Flanagan
Brenda Gallie
Esther González

Clinician Investigators
Dimitri Anastakis
Danielle Andrade
Heather Bältzer
Mark Bernstein
Anuj Bhattia
Michael Brent
Daniel Buchman
Frances Chung
Melanie Cohn
Robert Devenyi
Dean Elterman
Alfonso Fasano
Susan Fox
Kenneth Fung
Rajiv Gandhi
Timothy Jackson

Clinical Researchers
Ronit Agid
Jamal Ahmad
Peter Ashby
Yaron Avitzur
Brian Baker
Paul Binhammer
Jeff Bloom
Arthur Bookman
Sarah Brode
Richard Brull
Esther Bui
Yvonne Buys
Simon Carette
Leanne Casaubon
J David Cassidy
Rodrigo Cavalcanti
Jas Chahal
Clara Chan
Vincent Chan
Kenneth Chapman
Caroline Chessex
Angela Cheung
Ki Jinn Chin
Maria Cino
Michael Cusimano
J Roderick Davey
J Martin del Campo
Sherif El-Defrawy
W Mark Erwin
Richard Farb
Paul Fraser
David Frost
Alberto Goffi
Eyal Golan
Ewan Goligher
Allan Gordon
Brent Graham
Barry Greenberg
Raed Hawa
Robert Iwanochko
Sindhu Johnson
Ron Keren
Kyle Kirkham
Stephen Kraft
Timo Klings
Debbie Kwan
Jeffrey Kwong
Robert Lam
Wai-Ching Lam
Johnny Lau
Stephen Lewis
Joel Lexchin
Charles Lynde
Angela Mailis-Gagnon
Mark Mandelcorn
Pirjo Manninen
Katie Marchington
Samuel Markowitz
Patricia Marr
Connie Marras
Theodore Marras
Eric Massicotte
Steven McCabe
Azadeh Moaveni
Rakesh Mohankumar
Ali Naraghi
Ahtsham Niazi
Ivy Oandasan
Darrell Ogilvie-Harris
Allan Okrainec
Christian Pagnoux
Daniel Panisko
Christine Papoushek
Sagar Parikh
Philip Peng
Vitor Pereira
Anahi Perlas
Aleksandra Pikula
Atul Prabhu
Sidney Radomski
Sapna Rawal
Shail Rawal
Aylin Reid
Rowena Ridout
Jennifer Robblee
Sandra Robinson
Arjun Sahgal
David Salonen
Jorge Sanchez-Guerrero
Paul Sandor
Monica Scalco
Michael Schwartz
Hemant Shah
Colin Shapiro
Abdu Sharkawy
Sanjay Siddha
Frank Silver
Martin Simons
Jeffrey Singh
Mandeep Singh
Elizabeth Slow
Sumeet Sodhi
Neiles Soneji
Martin Steinbach
Barbara Stubbs
Khalid Syed
Peter Tai
Susan Talro
Maria Tassone
Karel terBrugge
Graham Trope
Karen Tu
Paul Tumber
Andrea Veljkovic
Alexander Velumian
Lakshmi Venkatraghavan
Herbert von Schroeder
Adam Weizman
Richard Wennberg
Robert Willinsky
David K Wong
David T Wong
Jean Wong
Eric Yu
Princess Margaret Cancer Centre

TOTAL RESEARCHERS 333
Appointed Researchers 82
Senior Scientists 44
Scientists 16
Affiliate Scientists 18
Assistant Scientist 1
Emeritus 3
Cancer Clinical Research Unit (CCRU) Members 251

RESEARCH SPACE 416,488 sq. ft.
EXTERNAL FUNDING $142,847,824
TOTAL TRAINEES 259
Fellows 124
Graduate Students 135
TOTAL STAFF 857
PUBLICATIONS 1,192

Research Council on Oncology (RCO)

Director, PM Cancer Centre; Chair, RCO; Chair, Executive Committee (Interim) Rama Khokha
Executive Committee Mitsuhiko Ikura, Rama Khokha, Mathieu Lupien, Pamela Ohashi, Gary Rodin, Aaron Schimmer, Vuk Stambolic, Ming-Sound Tsao, Brian Wilson, Gang Zheng
Chair, Appointments Committee Rama Khokha
Medical Director, Cancer Program Mary Gospodarowicz
Medical Director, Laboratory Medicine Program Runjan Chetty
Head, CCRU Amit Oza
Head, Medical Oncology and Hematology Amit Oza
Head, Radiation Medicine Fei-Fei Liu
Chief, Surgical Oncology Gelareh Zadeh
Executive Director, Research Operations Lisa Alcia
Senior Vice President and Site Lead, PM Cancer Centre Marnie Escaf
Executive Vice President, Science and Research Bradly Wouters

Researchers

Emeritus
Norman Boyd
Richard Hill
A Michael Rauth

Senior Scientists
Kenneth Aldape
Cheryl Arrowsmith
Sylvia Asa
David Brooks
Avijit Chakrabartty
Daniel De Carvalho
Gerald Devins
John Dick
Shereen Ezzat

Razqallah Hakem
David Hedley
Naoto Hirano
Doris Howell
Mitsuhiko Ikura
Norman Iscove
David Jaffray
Jennifer Jones
Igor Jurisica
Gordon Keller
Rama Khokha
Thomas Kislinger
Lothar Lilge
Fei-Fei Liu
Geoffrey Liu
Mathieu Lupien
Tak Mak
Tracy McGaha
Mark Minden
Benjamin Neel
Pamela Ohashi
Emil Pai
Christopher Paige
Linda Penn
Gilbert Privé
Brian Raught
Gary Rodin
Robert Rottapel
Aaron Schimme
Vuk Stambolic
Ming-Sound Tsao
I Alex Vitkin
Brian Wilson
Bradly Wouters
Gang Zheng
Camilla Zimmermann

Scientists
Laurie Ailles
Scott Bratman
Steven Chan
Ralph DaCosta
Kim Edelstein
Benjamin Haibe-Kains
Houusheng Hansen He
Michael Hoffman
Marianne Koritzinsky
Mohammad Mazhab-Jafari
Faiyaz Notta
Catherine O’Brien
Trevor Pugh
Rodger Tiedemann
Gelareh Zadeh

Assistant Scientist
Christopher Marshall

Affiliate Scientists
Mark Bray
Eric Chen
Phedias Diamandis
Ryan Dowling
Mary Jane Esplen
Anthony Joshua
C Anne Koch
Paul Kongkham
Robert Kridel
Benjamin Lok
Michael Moran
Michael Reedijk
Leonardo Salmena
Liran Shlush
Suzanne Trudel
Jean Wang
Paul Waterhouse
Wei Xu

Cancer Clinical Research Unit (CCRU)
Ayman Al Habeeb
Dominick Amato
Eitan Amir
Mostafa Atri
Michael Baker
Dwayne Barber
David Barth
Andrew Bayley
Nathan Becker
Philippe Bedard
J Robert Beecroft
Akbar Beiki-Ardakani
Jennifer Bell
Robert Bell
Alejandro Berlin
Hal Berman
Marcus Bernardini
Lori Bernstein
Andrea Bezjak
Ivan Blasutig
Scott Boerner
Penelope Bradbury
Anthony Brade
William Brien
James Brierley
Robert Bristow
Dale Brown
Karina Bukhanov
Ronald Burkes
Marcus Butler
Jeannie Callum
Marco Carlone
Angela Cashell
Charles Catton
David Cescon
William Chapman
Tanya Chawla
Christine Chen
Terry Cheng
Douglas Chepeha
Ranjit Chetty
Carol Cheung
Charles Cho
John Cho
Young-Bin Cho
James Chow
Caroline Chung
Peter Chung
Tae Bong Chung
Tulin Gil
Blaise Clarke
Sean Cleary
Tatiana Conrad
Tim Craig
Andrew Crean
Jennifer Croke
Michael Crump
Christine Cserti-Gazdewich
Bernard Cummings
Gilda da Cunha Santos
Norma D’Agostino
Laura Dawson
Jan Delabie
Uday Deotare
Neesha Dhani
Robert Dinniwell
Susan Done
James Downar
Daniel Drucker
Alexandra Easson
Elena Elimova
Christine Elser
Jaime Escallon
Andrew Evans
Hannaneh Faghfoury
Ronald Feld
Peter Ferguson
Sarah Ferguson
Carina Feuz
Antonio Finelli
Neil Fleshner
Warren Foltz
Jeremy Freeman
Anthony Fyles
Lucia Gagliese
Steven Gallinger
William Geddie
Fred Gentili
Sandeep Ghai
Sangeet Ghai
Danny Ghazarian
Ralph Gilbert
Caitlin Gillan
Meredith Giuliani
Rebecca Gladdy
David Goldstein
Pamela Goodwin
Chiara Gorrini
Mary Gospodarowicz
Rashmi Goswami
Anand Govindarajan
Paul Greig
Patrick Gullane
Abha Gupta
Vikas Gupta
Sara Hafezi-Bakhtiari
Masoom Haider
Sarah Hales
Robert Hamilton
Kathy Han
Toronto General Hospital Research Institute

Research Council

Director, TGHRI; Chair, TGHRI Research Council; Research Division Head (Acting), Experimental Therapeutics Mansoor Husain
Research Division Head, Advanced Diagnostics Myron Cybulsky
Research Division Head, Support, Systems & Outcomes Murray Krahn
Clinical Program Head, Transplantation Atul Humar
Clinical Program Head, Peter Munk Cardiac Centre Barry Rubin
Physician-in-Chief; Clinical Program Head, Medical & Community Care Edward Cole
Surgeon-in-Chief; Clinical Program Head, Surgical & Critical Care Shaf Keshavjee
Chair, TGHRI Appointments Committee Thomas Waddell
Group Lead, Communities of Health Shabbir Alibhai
Group Lead, Cardiovascular Slava Epelman
Group Lead, Infection & Immunity Adam Gehring
Group Lead, Respiratory & Critical Care Mingyao Liu
Group Lead, Metabolism Minna Woo
Executive Director, Research Operations Lisa Alcia
Senior Vice President and Site Lead, Toronto General Hospital Scott McIntaggart
Executive Vice President, Science and Research Bradly Wouters

Researchers

Advanced Diagnostics

Senior Scientists
- Johane Allard
- Peter Backx
- Daniel Cattran
- Myron Cybulsky
- I George Fantus

Researchers
- Eleanor Fish
- Jason Fish
- Joseph Fisher
- John Floras
- Tony Lam
- Gary Lewis
- Mingyao Liu

Affiliate Scientists
- Kumaraswamy Nanthakumar
- York Pei
- Bruce Perkins
- Barry Rubin
- James Scholey
- Katherine Siminovitch
- Michael Wheeler

Clinical Researchers
- Eldad Zackenshaus
- Li Zhang

Scientists

- Moumita Barua
- Filio (Phyllis) Billia
- David Cherney
- Bryan Coburn
- Shannon Dunn

TOTAL RESEARCHERS 397

<table>
<thead>
<tr>
<th>Appointed Researchers</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Scientists</td>
<td>63</td>
</tr>
<tr>
<td>Scientists</td>
<td>35</td>
</tr>
<tr>
<td>Affiliate Scientists</td>
<td>47</td>
</tr>
<tr>
<td>Assistant Scientist</td>
<td>4</td>
</tr>
<tr>
<td>Clinical Researchers</td>
<td>248</td>
</tr>
</tbody>
</table>

RESEARCH SPACE 171,800 sq. ft.

EXTERNAL FUNDING $72,491,550

TOTAL STAFF 459

TOTAL TRAINEES 281

TOTAL TRAINEES
- Fellows 104
- Graduate Students 177

PUBLICATIONS 1,454

RESEARCH SPACE

EXTERNAL FUNDING

TOTAL STAFF

TOTAL TRAINEES

PUBLICATIONS
Slava Epelman
Anthony Gramolini
Tianru Jin
Ana Konvalinka
Heather Reich
Clinton Robbins
Jonathan Rocheleau
Paaladinesh Thavendiranathan
Daniel Winer
Minna Woo
Affiliate Scientists
Donald Branch
Hong Chang
Peter Liu
Philip Millar
Anna Sawka
William Stansfield
Florence Wong
Assistant Scientist
Sonya MacParland

Experimental Therapeutics

Senior Scientists
T Douglas Bradley
Mark Cattral
Marc de Perrot
Niall Ferguson
Herbert Gaisano
Margaret Herridge
Atul Humar
Mansoor Husain
Harry Janssen
Kevin Kain
Keyvan Karkouli
Rupert Kaul
David Kelvin
Shaf Keshavjee
Lakshmi Kotra
Michael Laflamme
Gary Levy
Ren-Ke Li
Nancy Olivieri
Milica Radisic
Vivek Rao
Thomas Waddell
Sharon Walmsley
Richard Weisel
Scientists
Vijay Chauhan
Chung-Wai Chow
Marcelo Cypel
Satya Dash

Affiliate Scientists
Marisa Battistella
Mamatha Bhat
Gail Darling
Gregory Downey
Anand Ghanakar
David Grant
Raymond Hui
Shahid Husain
David Hwang
Stephen Juvet
Joel Katz
Thomas Lindsay
Tereza Martinu
Cheri McGowan
Raymond Reilly
Sheila Riazi
Heather Ross
Michael Setton
Markus Selzner
Morris Sherman
Darrell Tan
Terrence Yau
Assistant Scientists
Andrzej Chruscinski
Sara Santana Nunes
Vasconcelos

Clinical Researchers
Susan Abbey
Peter Adamson
Oyedele Adeyi
Ganesh Annamalai
Carmen Avila-Casado
Mitesh Badiwala
Mrinalini Balki
Meyer Balter
Joanne Bargman
Carolina Barnett
Alan Barolet
W Scott Beattie
Chaim Bell
Lee Benson
Matthew Binnie
Robert Bleakney
Andrea Boggild
Isaac Bogoch
Ari Breiner

Support, Systems & Outcomes

Senior Scientists
Shabbir Alibhai
Anne Bassett
Claire Bombardier
Angela Cheung
Peter Cram
Abdallah Daar
Gunter Eysenbach
Alastair Flint
Allan Kaplan
Moira Kapral
Murray Krahn
Douglas Lee
Charmaine Lok
Robert Nolan

Affiliate Scientists
Ana Carolina Alba
Anna Galliard
Bettina Hansen
Sarbjit Vanita Jassal
Janet Raboud
Valeria Rac
Beate Sander
Thomas Forbes
Suzanne Fredericks
Alan Fung
Sherry Grace
Brian Hodges
M Jane Irvine
Adrienne Kovacs
Jane MacIver
Gail McVey
Nicholas Mitsakakis
Kathryn Nichol
Karen Okrainec
Marion Olmsted
Jacob Pendergrast
Rima Styra
George Tomlinson
Alice Wei
D Blake Woodside
Assistant Scientist
Andy Wong

Clinical Researchers
Susan Abbey
Peter Adamson
Oyedele Adeyi
Ganesh Annamalai
Carmen Avila-Casado
Mitesh Badiwala
Mrinalini Balki
Meyer Balter
Joanne Bargman
Carolina Barnett
Alan Barolet
W Scott Beattie
Chaim Bell
Lee Benson
Matthew Binnie
Robert Bleakney
Andrea Boggild
Isaac Bogoch
Ari Breiner

Support, Systems & Outcomes

Senior Scientists
Shabbir Alibhai
Anne Bassett
Claire Bombardier
Angela Cheung
Peter Cram
Abdallah Daar
Gunter Eysenbach
Alastair Flint
Allan Kaplan
Moira Kapral
Murray Krahn
Douglas Lee
Charmaine Lok
Robert Nolan

Affiliate Scientists
Ana Carolina Alba
Anna Galliard
Bettina Hansen
Sarbjit Vanita Jassal
Janet Raboud
Valeria Rac
Beate Sander
Thomas Forbes
Suzanne Fredericks
Alan Fung
Sherry Grace
Brian Hodges
M Jane Irvine
Adrienne Kovacs
Jane MacIver
Gail McVey
Nicholas Mitsakakis
Kathryn Nichol
Karen Okrainec
Marion Olmsted
Jacob Pendergrast
Rima Styra
George Tomlinson
Alice Wei
D Blake Woodside
Assistant Scientist
Andy Wong

Clinical Researchers
Susan Abbey
Peter Adamson
Oyedele Adeyi
Ganesh Annamalai
Carmen Avila-Casado
Mitesh Badiwala
Mrinalini Balki
Meyer Balter
Joanne Bargman
Carolina Barnett
Alan Barolet
W Scott Beattie
Chaim Bell
Lee Benson
Matthew Binnie
Robert Bleakney
Andrea Boggild
Isaac Bogoch
Ari Breiner

Support, Systems & Outcomes

Senior Scientists
Shabbir Alibhai
Anne Bassett
Claire Bombardier
Angela Cheung
Peter Cram
Abdallah Daar
Gunter Eysenbach
Alastair Flint
Allan Kaplan
Moira Kapral
Murray Krahn
Douglas Lee
Charmaine Lok
Robert Nolan

Affiliate Scientists
Ana Carolina Alba
Anna Galliard
Bettina Hansen
Sarbjit Vanita Jassal
Janet Raboud
Valeria Rac
Beate Sander
Thomas Forbes
Suzanne Fredericks
Alan Fung
Sherry Grace
Brian Hodges
M Jane Irvine
Adrienne Kovacs
Jane MacIver
Gail McVey
Nicholas Mitsakakis
Kathryn Nichol
Karen Okrainec
Marion Olmsted
Jacob Pendergrast
Rima Styra
George Tomlinson
Alice Wei
D Blake Woodside
Assistant Scientist
Andy Wong

Clinical Researchers
Susan Abbey
Peter Adamson
Oyedele Adeyi
Ganesh Annamalai
Carmen Avila-Casado
Mitesh Badiwala
Mrinalini Balki
Meyer Balter
Joanne Bargman
Carolina Barnett
Alan Barolet
W Scott Beattie
Chaim Bell
Lee Benson
Matthew Binnie
Robert Bleakney
Andrea Boggild
Isaac Bogoch
Ari Breiner

Support, Systems & Outcomes

Senior Scientists
Shabbir Alibhai
Anne Bassett
Claire Bombardier
Angela Cheung
Peter Cram
Abdallah Daar
Gunter Eysenbach
Alastair Flint
Allan Kaplan
Moira Kapral
Murray Krahn
Douglas Lee
Charmaine Lok
Robert Nolan

Affiliate Scientists
Ana Carolina Alba
Anna Galliard
Bettina Hansen
Sarbjit Vanita Jassal
Janet Raboud
Valeria Rac
Beate Sander
Thomas Forbes
Suzanne Fredericks
Alan Fung
Sherry Grace
Brian Hodges
M Jane Irvine
Adrienne Kovacs
Jane MacIver
Gail McVey
Nicholas Mitsakakis
Kathryn Nichol
Karen Okrainec
Marion Olmsted
Jacob Pendergrast
Rima Styra
George Tomlinson
Alice Wei
D Blake Woodside
Assistant Scientist
Andy Wong
Techna Institute

TOTAL RESEARCHERS 47
Core Leads 9
Scientists 3
Affiliated Faculty 35

RESEARCH SPACE 27,820 sq. ft.

EXTERNAL FUNDING $11,586,816

TOTAL TRAINEES 21
Fellows 8
Graduate Students 13

TOTAL STAFF 106
Technology Development Team 45
Other Staff 61

TOTAL STAFF 106

PUBLICATIONS 346

Techna Leadership Team
Director, Techna Institute David Jaffray
Director, Clinical Processes Howard Abrams
Senior Director, Techna Innovation Luke Brzozowski
Director, Knowledge Transfer Nicole Harnett

Director, Research Faculty, Clinical Jonathan Irish

Director, Research Faculty, Physical Sciences J Paul Santerre
Director, Commercialization Mark Taylor
Executive Vice President, Science and Research Bradly Wouters

Researchers

Design & Engineering for Health
Core Lead
Joseph Cafazzo
Affiliated Faculty
Emily Seto
Patricia Trbovich

Guided Therapeutics
Core Leads
Jonathan Irish
David Jaffray
Walter Kucharczyk
Scientists
Margarete Akens
Arash Zarrine-Afsar
Affiliated Faculty
Dionne Aleman
Timothy Chan
James Drake
Claire McCann
Cynthia Ménard
Alexandra Rink
Michael Sherar

Jean-Pierre Bissonnette
Catherine Coolens
John de Almeida
Gabor Fichtinger
Howard Ginsberg
Justin Grant
Mojgan Hodaie
Andrew Hope
Mohammad Islam
Daniel Létourneau
Andres Lozano
Kieran Murphy
Narinder Paul
Thomas Purdie
Dheeraj Rajan
Teodor Stanescu
Robert Weersink
Bernd Wintersperger
Kazuhiro Yasufuku

Informatics & Communications Technology
Core Leads
Igor Jurisica

Peter Rossos
Affiliated Faculty
Brenda Gallie
Alejandro Jadad
Michael Jewett
Gordon Tait
Christian Veillette

Nanotechnology & Radiochemistry
Core Leads
Ur Meters
Gang Zheng
Affiliated Faculty
John Valliant

Photonics
Core Lead
Brian Wilson
Scientist
Ralph DaCosta
Affiliated Faculty
I Alex Vitkin
Toronto Rehabilitation Institute

TOTAL RESEARCHERS 118
ReSEARCH SPACE 55,965 sq. ft.
Appointed Researchers 111
Senior Scientists 23
Scientists 21
Affiliate Scientists 67
Clinical Researchers 7

EXTERNAL FUNDING $16,402,393
TOTAL TRAINEES 102
Fellows 25
Graduate Students 77
TOTAL STAFF 104
PUBLICATIONS 508

Research Advisory Council (RAC)
Director, TRI; Chair, RAC Geoff Fernie
Associate Academic Director of Research, TRI Susan Jaglal
Associate Scientific Director of Research, TRI Milos Popovic
Team Leaders Mark Bayley, Angela Colantonio, Tilak Dutta, Robin Green, Owen Lyons, Katherine McGilton, Alex Mihailidis, Paul Oh, B Catharine Craven, Catriona Steele, Yana Yunusova
Sub-Committee Chairs B Catharine Craven, Susan Jaglal, Katherine McGilton, Milos Popovic
Business Development & Organization Effectiveness Catharine Hancharek, Anthony Palma
Research Services & Operations Lois Ward
Senior Vice President and Site Lead, Toronto Rehab Susan Jewell
Executive Vice President, Science and Research Bradly Wouters

Researchers

Acquired Brain Injury & Society
Senior Scientists
Mark Bayley
Angela Colantonio

Scientist
Nora Cullen
Affiliate Scientists
Deirdre Dawson
Emily Dalder
Mary Stergiou-Kita

Artificial Intelligence & Robotics for Rehabilitation
Senior Scientist
Alex Mihailidis

Scientist
Babak Taati
Affiliate Scientists
Sonya Allin
Jennifer Boger
Sven Dickinson
David Fleet
Deborah Hébert
Dana Kulić
Alan Mackworth
Goldie Nejat
Pascal Poupart
Rosemary Ricciardelli
Rosalie Wang

Brain Discovery & Recovery
Senior Scientist
Robin Green
Affiliate Scientists
Asaf Gilboa
Jennifer Steeves
Cardiorespiratory Fitness
Senior Scientists
David Alter
Sherry Grace
Scientists
Tracey Colella
Paul Oh
Affiliate Scientists
Jack Goodman
Krista Lanctôt
Walter Swardfager
Scott Thomas

Communication
Senior Scientists
Elizabeth Rochon
Yana Yunusova
Scientist
Frank Rudzicz
Affiliate Scientists
Melanie Baljko
Boaz Ben-David
Craig Chambers
Tom Chau
Petros Faloutsos
Julie Mendelson
Aravind Namasivayam
Frank Russo
Gurjit Singh
Pascal van Lieshout

Home, Community & Institutional Environments
Senior Scientists
Geoff Fernie
Andrea Furlan
Scientists
Jennifer Campos
Tilak Dutta
Bruce Haycock
Behrang Keshavarz
Alison Novak
Christine Novak
Affiliate Scientists
Veronique Boscart
Karen Gordon
Dinesh Kumbhare
Matthew Muller
Hani Naguib
Donald Philip
Veronica Wadey

Mobility
Senior Scientists
Mark Bayley
Dina Brooks
Brian Maki
William McIlroy
W Darlene Reid
Scientists
William Gage
Avril Mansfield
Kara Patterson
Affiliate Scientists
Alastair Flint
Mary Fox
Jesse Hoey
Andrea Iaboni
Elizabeth Inness
Andrew Laing
Sunita Mathur
Laura Middleton
George Mochizuki
Stephen Perry
James Pratt
Luc Tremblay
Karl Zabjek

Neural Engineering & Therapeutics
Senior Scientists
B Catharine Craven
Milos Popovic
Scientists
César Márquez-Chin
Kei Masani
Kristin Musselman
Jose Zariffa
Affiliate Scientists
Sandra Black
Julio Furlan
Lora Giangregorio
Sander Hitzig
Pamela Houghton
Ethne Nußbaum
Linda Rapson
Molly Verrier
Timothy Welsh
Paul Yoo

Optimization of the Rehab System
Senior Scientists
Mark Bayley
Cheryl Cott
Andrea Furlan
Susan Jaglal
Pia Kontos
Katherine McGilton
I Gary Naglie
Scientists
Shabbir Alibhai
Nora Cullen
Affiliate Scientists
G Ross Baker
Veronique Boscart
Jill Cameron
Mary Fox
Nancy Salbach
Kathryn Sibley

Sleep Science
Senior Scientists
T Douglas Bradley
W Darlene Reid
Scientists
Hisham Alshaer
Azadeh Yadollahi
Affiliate Scientists
Owen Lyons
Clodagh Ryan

Swallowing Science
Senior Scientist
Catriona Steele
Affiliate Scientist
Lisa Duizer

Clinical Researchers
Julia Alleyne
Anthony Burns
Ann Heesters
Susan Marzolini
Colleen McGillivray
Denyse Richardson
Gaétan Tardif
Research Committees

Biomedical Research Ethics Board: Panel A
- Alan Barolet (Chair)
- Sharon Braganza
- Kim Cadario
- Derek Cathcart
- Robert Cusimano
- Seema David
- Erin Dobbelsteyn
- James Downar
- Nicole Feldman
- Scott Fung
- Peter Giacobbe
- Andrew Ha
- Matt Kim
- Jane Lui
- Connie Marras (Vice Chair)
- Heather Sampson
- Carl Virtanen
- Jean Wang
- Duminda Wijeysundera
- Noe Zamel
- Samantha Sonshine
- Lorisa Stein
- Naomi Visanji
- Hannah Walters-Vida

Cancer Clinical Research Unit Executive Committee
- James Brierley
- Pamela Degendorfer (Co-Chair)
- Penelope Bradbury
- Anthony Fyles
- Krystal Internicola (ex officio)
- Brefnni Hannon
- Jennifer Knox
- Amit Oza (Chair)
- Michael Reedijk
- Patrik Rogalla
- Pam Savage
- Aaron Schimmer
- Susanna Sellmann
- Theo van der Kwast
- Marcia Flynn-Post
- Jasmine Grant
- Julie Gundy
- Sisi Jia
- Tuula Kalliomäki
- Jennifer Li
- Karen Ng
- Gerard Paras
- Nishita Parekh
- Michele Petrovic (Interim)
- Jesus Piza-Rodriguez
- Tracey Powell
- Menaka Pulandiran
- Kendra Ross
- Maria Schlag
- Susanna Sellmann (Co-Chair)
- Vanessa Speers
- Marissa Tang Fong
- Ruth Turner
- Smitha Udagani (Interim)
- Celeste Yu

Biomedical Research Ethics Board: Panel B
- Ian Arnold
- Alan Barolet (Chair)
- Ruth Anne Baron
- David Barth (Vice Chair)
- Daniel Buchman
- David Cherney
- Natasha Danson
- Nigil Haroon
- Magdy Hassouna
- Michael Hutcheon
- Ali Naraghi
- John Parker
- Ron Seto
- Morris Sherman
- Niki Agelastos (Committee Secretariat)
- Penny Bradbury
- James Brierley (Chair)
- Carol Cheung
- Darlene Dale (Co-Chair)
- Alexandra Easson
- Calven Eggert
- David Goldstein
- Joelle Helou
- John Kuruvilla
- Tony Panzarella
- Bayardo Perez-Ordonez

Clinical Studies Quality Committee
- Lisa Alcia
- Charles Chan (Co-Chair)
- Jordan Feld
- John Floras
- Carole Garmaise
- John Granton
- Ann Heesters
- Jin Huh
- Deepali Kumar
- Paul MacPherson
- Paul Oh
- Amit Oza
- Patrik Rogalla
- Katie Roposa
- David Urbach
- Sharon Walmsley
- Bradly Wouters (Co-Chair)

Data Safety Monitoring Board
- Mary Anne Chappell
- Heather Cole (ex officio)
- Kathy Han
- Krystal Internicola (ex officio)
- Haiyan Jiang
- Girish Kulkarni
- John Kuruvilla
- Srikala Sridhar (Chair)
- Ruth Turner

Krembnil Appointments Committee
- Aileen Davis
- Peter Carlen
- Karen Davis
- James Eubanks
- Andres Lozano (Chair)
- Valerie Wallace
- Donald Weaver
Krembil Clinician Investigator Appointments Committee
Mary Pat McAndrews
Y Raja Rampersaud
Antonio Strafella
Donald Weaver (Chair)

Krembil Space Committee
Aileen Davis
Karen Davis
James Eubanks (Chair)
Ian McDermott
Frank Vidic
Valerie Wallace
Donald Weaver
Joan Wither

Krembil Trainee Affairs Committee
Anna Badner
Jason Charish
Jonathon Chio
Leanne DaCosta
Aidan Dineen
Rachel Dragas
Helal Endisha
Nisah Ganeswaran
Alexandre Guet-McCreight
Peter Hung
William Hutchison
Amy Ma
Mary Pat McAndrews
Carley McPherson
Samira Patel
Kaitlyn Price
Emma Reble
Cricia Rinchon
Anton Rogachov
Kairavi Shah
Frances Skinner (Chair)
Alessandra Tuccitto
Uilki Tufa

Manoj Vasudeva
Julie Wan
Joan Wither
Mental Yerusalmi
Gilbert Privé
Gary Rodin
Robert Rottapel
Vuk Stambolic

Oncology Research Ethics Board: Panel C
Eitan Amir (Vice Chair)
Jennifer Bell
Hal Berman
Marcus Butler
Michael Crump
Stephanie DeLuca
Robert Dinniwell
Master Donald
Jaime Escallon
Ronald Feld
Eli Fellman
Anthony Fyles
Robert Hamilton
Aaron Hansen
Jack Holland (Chair)
Belling Leung
Carmen Li
Manjula Maganti
Caroline McNamara
Frank Michelis
Rebecca Prince
Nikolina Rudulovich
Albiruni Razak
Katherine Renison
Gordon Robinson
Gregory St. Pierre
Jenna Sykes
Santhosh Thyagu
Ruth Turner

PM Equipment Committee
Laurie Ailles
Mitsuhiko Ikura
Rama Khokha
Thomas Kislinger
Trevor Pugh
Robert Rottapel
Malcolm Smith
Ming-Sound Tsao
Brian Wilson (Chair)
Patrick Yau

PM Space Committee
Michael Hoffman
Mitsuhiko Ikura
Rama Khokha
Pamela Ohashi (Chair)
Gary Rodin
Aaron Schimmer

Radionuclide Safety Committee
Shelley Belford
Jonathan Brotchie
Gina Capone
Perry Chong
Mary Fountas
Judy Gabrys (Co-Chair)
Mihaela Ginj
David Green
Norman Iscove
Ian McDermott
Ur Metser
Jerry Plastino
Deborah Scollard
Frank Tourneur (Co-Chair)
Li Zhang

Rehabilitation Medicine and Science Research Ethics Board: Panel D
Puja Ahluwalia
Tania Artinian
Jeffery Baine
Carly Barbon
Ahmed Bilal
Jennifer Boger
Anthony Burns
Tracey Colella
Carol Fantott
Heather Flett
Igor Gontcharov
Ann Heesters (Chair)
Shadi Katirai
Pia Kontos
Avril Mansfield
César Márquez Chin
Kei Masani
Nadia Meli
Sonia Minasian
Ashwini Namasivayam
Diane Nixon
Stephanie Nixon
Paul Oh (Vice Chair)
Archna Patel
Linda Penoyer
Marta Pesin
Karen Sasaki
Catriona Steele
Yervant Terzian
Daniel Vena
Rosalie Wang
Rosalind Waxman
Nykema Wright
Lesley Wylie
Research Committees

Research Biosafety Committee
- Lorraine Kalia
- Carly Rebelo
- Jeanette MacLean (ex officio)
- Ian McDermott (ex officio)
- Badru Moloo (ex officio)
- Gilbert Privé
- John Shannon (Acting Chair)

Research Risk and Audit Committee
- Lisa Alcia (Chair)
- Chip Campbell
- Gabriella Fischer
- Tom Goldthorpe
- Tony Goncalves
- Alex Karabanow
- Sandra Karlovich
- Anthony Palma
- Amy Ma
- Paul MacPherson
- Carley McPherson
- Ian McDermott
- Peggy McGill
- Kathy McGilton
- Tracy McGuire
- Arjeta Meneri
- Badru Moloo
- Lisa Murphy
- Katie Roposa (Co-Chair)
- Evelina Rutkowski
- Gianfranco Scipione
- Anita Sengar
- John Shannon
- Mike Voth
- Lois Ward
- Bradly Wouters
- Patrick Yau

TGHRI Appointments Committee
- David Cherney
- Angela Cheung
- Myron Cybulsky
- Murray Krahn
- Anna Gagliardi
- Margaret Herridge
- Mansoor Husain
- Robert Nolan
- Brad Wouters
- Jason Fish
- Thomas Waddell (Chair)
- Minna Woo

TRI Central Patient & Subject Recruitment Committee
- Mark Bayley
- B Catharine Craven (Chair)
- Geoff Fernie
- Susan Jaglal
- Milos Popovic (Chair)

TRI Standard Operating Procedures Committee
- Jennifer Campos
- Geoff Fernie (Co-Chair)
- Catharine Hancharek
- Susan Jaglal
- Katherine McGilton
- Alex Mihailidis
- Paul Oh
- Milos Popovic
- Catriona Steele
- Yana Yunusova

TRI Junior Scientists’ Support & Mentorship Committee
- Tracey Colella
- Susan Jaglal (Chair)
- Avril Mansfield
- Lois Ward
- Azadeh Yadollahi

TRI Scientists’ Productivity & Promotions Committee
- Geoff Fernie
- Susan Jaglal
- Milos Popovic (Chair)

TRI International Scientific Advisory Committee
- Martin Ferguson-Pell
- William Mann
- Anne Martin-Matthews (Chair)
- Alain Ptito
- Jerker Rönberg
- John Steeves

TRI Team Leaders’ Committee
- Mark Bayley
- Angela Colantonio
- B Catharine Craven
- Tilak Dutta
- Geoff Fernie (Chair)
- Robin Green
- Catharine Hancharek (ex officio)
- Susan Jaglal
- Owen Lyons
- Katherine McGilton
- Alex Mihailidis
- Paul Oh
- Milos Popovic
- Catriona Steele
- Yana Yunusova

TRI Junior Scientists’ Support & Mentorship Committee
- Susan Jaglal (Chair)
- Lois Ward
- Nisha Ganeswren
External Sponsors

Our partners provide key support for our research activities

Abbott
AbbVie
Acetylone Pharmaceuticals
Acorda Therapeutics
Actelion Pharmaceuticals
ActiveO
Acumyn
Adamas Pharmaceuticals
Adaptimmune
Aeglea Biotherapeutics
Aerie Pharmaceuticals
AGA Medical
Agensys
AGE-WELL
Agios Pharmaceuticals
Alcon Canada
Alexion Pharmaceuticals
Alfred Health
Alion Pharmaceuticals
Allergan
AllerGen
Alnylam Pharmaceuticals
Alpha Cancer Technologies
Alzheimer Society of Canada
Alzheimer’s Association
American Academy of Otolaryngology
American Association for Cancer Research
American Association for Thoracic Surgery
American Association of Neurological Surgeons
American College of Radiology Imaging Network
American College of Rheumatology
American Society of Hematology
American Society of Nephrology
American Society of Neuroradiology
American Society of Transplant Surgeons
American Society of Transplantation
American Thoracic Society
Amgen
Anesthesia Patient Safety Foundation
AOSpine
apceth Biopharma
APOCARE Pharma
Arbor Research Collaborative for Health
Arbutus Biopharma
Arthritis Research Foundation
Associated Medical Services
Association of University Radiologists
Astellas Pharma
Astex Pharmaceuticals
AstraZeneca
Avarin Pharmaceutical
Barbara Ann Karmanos Cancer Institute
Bard Canada
Bavarian Nordic
Baxter
Bayer
Beckman Coulter
Benvenue Medical
Beth Israel Deaconess Medical Center
Bill & Melinda Gates Foundation
BioCanRx
Biocompatibles UK
Biogen
Biosensors International
Boehringer Ingelheim
Boston Biomedical
Boston Children’s Hospital
Boston Medical Center
Boston Scientific
Brain & Behavior Research Foundation
Brain Canada
BresoTEC
Bristol-Myers Squibb
British Columbia Cancer Agency
Canada Foundation for Innovation
Canada Health Infoway
Canada Research Chairs
Canadian Agency for Drugs and Technologies in Health
Canadian Allergy, Asthma and Immunology Foundation
Canadian Anesthesiologists’ Society
Canadian Arthritis Network
Canadian Association for the Study of the Liver
Canadian Association of Psychosocial Oncology
Canadian Association of Radiation Oncology
Canadian Blood and Marrow Transplant Group
Canadian Blood Services
Canadian Breast Cancer Foundation
Canadian Cancer Society Research Institute
Canadian Diabetes Association
Canadian Foundation for AIDS Research
Canadian Frailty Network
Canadian Heart Research Centre
Canadian Hematology Society
Canadian Institutes of Health Research
Canadian Liver Foundation
Canadian National Transplant Research Program
Canadian Occupational Therapy Foundation
External Sponsors

Canadian Partnership Against Cancer
Canadian Partnership for Stroke Recovery
Canadian Patient Safety Institute
Canadian Psychological Association
Canadian Pulmonary Fibrosis Foundation
Canadian Radiation Oncology Foundation
Canadian Rheumatology Association
Canadian Society of Hospital Pharmacists
Canadian Urological Association
Cancer Care Ontario
Cancer Research Institute
Cancer Research Society
CannScience Innovations
Carestream Health
Caris Life Sciences
CASI Pharmaceuticals
Cedars-Sinai Medical Center
Celgene
Celsion
Centre for Addiction and Mental Health
Centre for Commercialization of Regenerative Medicine
Centre hospitalier de l'Université de Montréal
Cervical Spine Research Society
Children’s Hospital of Eastern Ontario
Children’s Hospital of Philadelphia
Chimerix
CIHR Canadian HIV Trials Network
Cincinnati Children’s Hospital Medical Center
Cleave Biosciences
Clinique La Prairie
Colon Cancer Canada
Columbia University
Concordia Pharmaceuticals
Conkwest
Conquer Paralysis Now
Cook Group
Craig H. Neilsen Foundation
CREAtE Cord Blood & Peristem Cell Bank
CSL Behring
CTI BioPharma
Cystic Fibrosis Canada
Daichi Sankyo
Dartmouth College
Department of National Defence
DLVR Therapeutics
DNAtrix
Duke University
Dystonia Medical Research Foundation
Edwards Lifesciences
Elekta
Eli Lilly Canada
EMD Group
Emory University
Epilepsy Canada
Epizyme
Essilor
European Organisation for Research and Treatment of Cancer
Exact Imaging
Exelixis
FedDev Ontario
Ferring Pharmaceuticals
Fluidigm
Foundation Fighting Blindness
Fred Hutchinson Cancer Research Center
 Fresenius Kabi
Friends of FACES
GBS/CIDP Foundation International
GE Canada
Genentech
Genome Canada
Genzyme
George Institute for Global Health
Gilead Sciences
Glaucoma Research Society of Canada
GlaxoSmithKline
Global Affairs Canada
Grand Challenges Canada
Grifols
Hackensack University Medical Center
Hamilton Health Sciences
Hauptman-Woodward Medical Research Institute
Health Technology Exchange
Heart and Stroke Foundation of Canada
Heart and Stroke Foundation of Ontario
Hemostemix
Henry Ford Health System
Hôpital Maisonneuve-Rosemont
Horizon Pharma
Hospira
Hybridyne Imaging Technologies
Icahn School of Medicine at Mount Sinai
Imago BioSciences
Immune Diagnostics & Research
Immunocellular Therapeutics
INC Research
Inception Sciences
INSIGHTEC
Insmed
Institut de recherche Robert-Sauvé en santé et en sécurité du travail
Institut universitaire de cardiologie et de pneumologie de Québec
Institute for Clinical Evaluative Sciences
Intercept Pharmaceuticals
InterMune
International Human Frontier Science Program
International Parkinson and Movement Disorders Society
International Rett Syndrome Foundation
International Society for Heart & Lung Transplantation
International Society for Peritoneal Dialysis
Interrad Medical
InVivo Therapeutics
IQVIA
iRT Systems
Israel Cancer Research Fund
J.P. Bickell Foundation
Jaeb Center for Health Research
Prostate Cancer Canada
Protagen
ProteoMediX
Proteon Therapeutics
Prothena
Providence Health Care
Public Health Agency of Canada
PuraPharm
Queen’s University
Radiological Society of North America
Raysearch Laboratories
Regulus Therapeutics
Revelatio
Rick Hansen Foundation
Rick Hansen Institute
Roche
Royal College of Physicians and Surgeons of Canada
Saint Elizabeth Health Care
Samuel Waxman Cancer Research Foundation
Sandra Rotman Centre
Sanofi
Sarcoma Cancer Foundation of Canada
Savoy Foundation
Schering-Plough
Seattle Children’s Hospital
Sequana Medical
Shionogi
Shire
SickKids
Siemens
Sigma Theta Tau International
Simon Fraser University
Smiths Medical
Society for Vascular Surgery
Society of American Gastrointestinal and Endoscopic Surgeons
Society of Anesthesia and Sleep Medicine
Society of Uroradiology
Southlake Regional Health Centre
SpectraCure
Spencer Foundation
Spring Bank Pharmaceuticals
St. Joseph’s Healthcare Hamilton
St. Jude Medical
St. Mary’s Research Centre
St. Michael's Hospital
Stanley Medical Research Institute
State University of New York
Stryker
Sunnybrook Health Sciences Centre
Sunovion
Susan G. Komen
Takara Bio
Takeda Oncology
TauRx Therapeutics
TD Bank Group
Ted Rogers Centre for Heart Research
Terry Fox Research Institute
Terumo
Tesaro
Thalassemia Foundation of Canada
The Arthritis Society
The Arthritis Society
The MAYDAY Fund
The Michael J. Fox Foundation for Parkinson’s Research
The Parkinson’s Foundation
The Plastic Surgery Foundation
The Princess Margaret Cancer Foundation
The Vitamin D Society
The W. Garfield Weston Foundation
Theralase
Therapure Biopharma
Thoratec
Thornhill Medical
Thrasos Innovation
Threshold Pharmaceuticals
Thrombosis Research Institute
Tocagen
Tokai Pharmaceuticals
Tornado Spectral Systems
Toronto Central Local Health Integration Network
Toronto Dementia Research Alliance
Toronto General & Western Hospital Foundation
Toronto Rehab Foundation
Toshiba Medical Systems
Trillium Therapeutics
Triphase Accelerator Corporation
UCB
United States Department of Defense
University Hospital Tuebingen
University of Alberta
University of British Columbia
University of Calgary
University of California, Los Angeles
University of California, San Diego
University of California, San Francisco
University of Chicago
University of Colorado
University of Florida
University of Iowa
University of Louisville
University of Manitoba
University of Maryland
University of Medicine and Dentistry of New Jersey
University of Miami
University of Michigan
University of Ottawa
University of Pennsylvania
University of Regina
University of Rochester
University of Saskatchewan
University of Texas
University of Toronto
University of Virginia
University of Washington
University of Waterloo
University of Western Ontario
University of Zurich
Urology Association of Portugal
Vancouver Coastal Health Research Institute
Veran Medical Technologies
Vernacare Canada
Vertex Pharmaceuticals
Virginia Commonwealth University
Wake Forest University
Wings for Life
Women’s College Hospital
Financials
Research funding by source

TOTAL FUNDING $386,192,252

Financial data provided by UHN Research Financial Services. The above figures represent funding revenues (by source) received to support direct and indirect research for the fiscal year ending March 31, 2017. The ‘Government of Ontario’ funding category represents contributions from provincial government programs, including the Ministry of Health and Long-Term Care, and the Ministry of Research, Innovation and Science (excluding the Ontario Research Fund Research Infrastructure Fund). Funding agencies/organizations that contributed $3,500,000 or more are indicated.

*The Foundations donate to UHN for purposes in addition to supporting research. As per UHN’s audited financial statements for the fiscal year ended March 31, 2017, grants and donations for research and other purposes provided by UHN foundations were: $102,460,000 for The Princess Margaret Cancer Foundation; $5,683,000 for the Toronto Rehab Foundation; and $76,777,000 for the Toronto General & Western Hospital Foundation.
International Research Advisory Board

Samuel Weiss, PhD (Chair)
Professor, Departments of Cell Biology & Anatomy and Physiology & Pharmacology, University of Calgary; Inaugural Director of the Hotchkiss Brain Institute

Philip E Branton, OC, PhD, FRSC
Gilman Cheney Professor, Departments of Biochemistry and Oncology and the Goodman Cancer Centre, McGill University

Thomas Rockwell Mackie, PhD
Professor Emeritus, Medical Physics and Human Oncology, University of Wisconsin; Director, Medical Devices Focus Area, Morgridge Institute for Research

Lynne Warner Stevenson, MD
Director, Cardiomyopathy and Heart Failure Program, Brigham and Women’s Hospital; Professor, Harvard Medical School

John E Wennberg, MD, MPH
Active Professor Emeritus of Community & Family Medicine, Peggy Y Thomson Professor Emeritus in Evaluative Clinical Sciences and Director Emeritus and Founder, The Dartmouth Institute for Health Policy & Clinical Practice

Research Committee Board of Trustees

Independent Trustees (Voting)
Lawrence Pentland (Chair), Barbara Stymiest, Trevor Young

Ex-officio Trustees (Voting)
Charlie Chan (Interim CEO), Joy Richards

Others (Voting)
Sean Boyd, Tom Ehrlich, Mark Krembil, John O’Grady

Ex-officio Non-Trustees (Non-voting)
Larry Baldachin, Darlene Dasent, John Granton, Bradly Wouters

Disclaimers
Publications, Personnel, Research Committees: Publication data provided by UHN Research Program Planning & Analysis. Leadership data provided by UHN institute Business Managers. Data accurate as of September 1, 2017. Some figures may be rounded and/or may include data not represented in institute data. Publications jointly authored by investigators at multiple UHN institutes are counted only once in the UHN total. Researchers with more than one affiliation within an institute, or between institutes, are only included once in the total count. Metrics for each institute were calculated by considering data on all Researchers, which include CCRU or Clinical Researchers as applicable. Please note that Clinical Researchers and CCRU investigators are not formally appointed at the research institutes and are therefore not subject to the research institutes' scientific and performance reviews. Clinical Researchers are defined as UHN staff who are listed as corresponding or principal author on at least one publication in the 2016 calendar year and/or held research funding over the 2016/17 fiscal year. †Dr. Martin Steinbach (p. 30) passed away on June 24, 2017.

Trainees: Institute trainee counts are accurate as of August 1, 2017 and were provided by UHN’s Office of Research Trainees. Counts reflect trainees supervised by researchers with a primary UHN research appointment and who spent more than 50% of their time at UHN.

Space: Data provided by UHN Research Facilities Planning & Safety and based on space audited by September 1, 2017 across UHN sites. Core facilities and Research Solutions and Services spaces are not included in institute space totals.

Production Credits: This report is published by the Office of the Executive Vice President, Science and Research, UHN. Graphic design, writing and production by UHN’s Strategic Research Initiatives Development Team (StRiDe).

Institute Financials: The ‘External Funding’ value in each snapshot represents total research project funding received by investigators that are primarily affiliated with each specific institute in the 2016/17 fiscal year.
Innovation fuels our drive to make health care better, faster and stronger.

To learn more visit UHNresearch.ca